
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Utilizing Parallelism in Smart Contracts on Decentralized
Blockchains by Taming Application-Inherent Conflicts

Anonymous Author(s)

ABSTRACT
Traditional public blockchain systems typically had very limited
transaction throughput due to the bottleneck of the consensus
protocol itself. With recent advances in consensus technology, the
performance limit has been greatly lifted, typically to thousands
of transactions per second. With this, transaction execution has
become a new performance bottleneck. Exploiting parallelism in
transaction execution is a clear and direct way to address this and
further increase transaction throughput. Although some recent
literature introduced concurrency control mechanisms to execute
smart contract transactions in parallel, the reported speedup that
they can achieve is far from ideal. The main reason is that the
proposed parallel execution mechanisms cannot effectively deal
with the conflicts inherent in many blockchain applications.

In this work, we thoroughly study the historical transaction exe-
cution traces in Ethereum. We observe that application-inherent
conflicts are the major factors that limit the exploitable parallelism
during execution. We propose to use partitioned counters and spe-
cial commutative instructions to break up the application conflict
chains in order to maximize the potential speedup. During our eval-
uations, these techniques doubled the parallel speedup achievable to
an 18x overall speedup compared to serial execution, approaching
the optimum.We also propose an OCC scheduler with deterministic
aborts, which makes it suitable for practical integration into public
blockchain systems.

ACM Reference Format:
Anonymous Author(s). 2021. Utilizing Parallelism in Smart Contracts on
Decentralized Blockchains by Taming Application-Inherent Conflicts. In
ICSE 2022: The 44th International Conference on Software Engineering, May
21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The technical challenge of scaling permissionless blockchains has
been a hot research topic for the last few years. With various scaling
solutions, be it Ethereum 2.0’s sharding or Conflux’s Tree-Graph
ledger structure, the consensus mechanism ceases to be the perfor-
mance bottleneck. While disk I/O, network bandwidth, and trans-
action execution are all possible sources of contention, transaction
execution is arguably the most challenging one to address.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

Distributed ledgers that follow the account model originally
introduced by Ethereum are designed to reach consensus on a
sequence of transactions, then process them serially. As a result,
current protocols and their implementations are unable to make use
of multiple threads on multi-core processors during this execution
step. Given the dependencies between transactions through their
accesses to a shared data structure called the state tree, the first
challenge is to understand how much speedup we can potentially
achieve by executing them in parallel. Then, the next challenge
would be to design a parallel scheduler with sufficient determinism
so that nodes can reach consensus.

To understand the degree of parallelism present in existing trans-
action workloads, this paper empirically studied a period of his-
torical Ethereum transactions. Taking state access traces (perfect
information), transaction gas costs, and the degree of parallelism
of computing resources (e.g., 32 threads) as inputs, we constructed
an optimal schedule for each block, then compared its execution
time to that of serial execution. Our major findings include:

(1) The overall speedup achievable is limited at about 4x com-
pared to serial execution.While there are many blocks whose
execution scales with the number of threads, a large portion
of blocks performs significantly worse. These results are
consistent with previous works. [22, 23]

(2) Most blocks are bottlenecked on a single chain of depen-
dent transactions that need to be executed serially and thus
dominate the overall execution time.

(3) A manual inspection of the bottleneck transactions shows
that most of them conflict on a single counter or array. From
the application’s perspective, most bottleneck transactions
can be classified into one of three categories: token distribu-
tion, collectibles, and decentralized finance.

The empirical study results suggest that, instead of optimizing
scheduler implementations, our primary focus should be on elimi-
nating these common sources of contention in smart contracts.

In this paper, we propose a number of different approaches for
eliminating the aforementioned bottlenecks. One approach is to
use partitioned counters, similar to the sloppy counters used in the
Linux kernel, originally introduced by Boyd-Wickizer et al. [5]. In
this approach, we maintain several sub-counters, the sum of which
constitutes the value of the original counter. Writes are routed to
and operate on different sub-counters based on some attribute, e.g.,
the sender’s address. This way, partitioned counters reduce the
probability that any two writing transactions will conflict.

Another approach to addressing bottlenecks is to bypass avoid-
able conflicts arising from commutative updates on the virtual
machine level. Two transactions that both increment a counter but
do not use its original value are semantically commutative. How-
ever, under the current Ethereum Virtual Machine semantics such
increments are translated into a read (SLOAD) and a write (SSTORE)
instruction which will lead to read-write conflicts. We propose a

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

new instruction called CADD (commutative add). Two transactions
that only have CADD operations but no other reads and writes on
a given state entry are not considered conflicting. Increments are
applied during transaction commit serially.

Our evaluations suggest that these approaches can raise the
amount of speedup achievable to 18x or more, making it approach
the optimal case where all transaction dependencies are ignored.

We also note that the non-determinism that is characteristic of
parallel execution might prevent blockchain nodes from reaching
consensus. A set of incentives for good behavior (i.e., following the
protocol) and dis-incentives for bad behavior (i.e., attacking or mis-
using the protocol) is an essential part of permissionless blockchains.
Ethereum and similar systems offer no incentive to write smart
contracts or pack blocks in a way that improves transaction par-
allelizability. The number of conflicts and/or transaction aborts is
a metric of parallelizability that the incentive layer could use to
assign financial rewards and penalties. However, under traditional
approaches like Optimistic Concurrency Control (OCC) [16], even
if we enforce a deterministic commit order, the actual execution on
different nodes might still diverge. This would lead to differences
in this metric on different nodes and thus it would prevent nodes
from reaching consensus.

To address this issue, we introduce an optimistic scheduler with
deterministic transaction aborts. To our knowledge, this algorithm
is the first of its kind, mostly because distributed ledgers have
more stringent determinism requirements than most other domains.
Based on our evaluation, this approach allows us to introduce in-
centives for parallelizability in exchange for a performance impact
that is, on average, acceptable.

In summary, this paper’s major contributions are recognizing
that certain common application-inherent transaction conflicts lead
to bottlenecks under parallel execution, providing a set of effec-
tive techniques to deal with these, and offering a deterministic
scheduling algorithm that makes it possible to incentivize better
parallelism.

2 BACKGROUND AND MOTIVATION
Bitcoin [19] introduced blockchains with the goal of supporting
cryptocurrency payment transactions without relying on any cen-
tral authority. Such a public blockchain is a distributed ledger
maintained by a peer-to-peer network in a trustless and permis-
sionless way. The core piece of this technology is its consensus
protocol, Nakamoto consensus, that probabilistically guarantees the
irreversibility of transactions in decentralized public settings, even
under adversarial conditions. The ledger is composed of a chain
of blocks, each of which contains a sequence of transactions, and
replicated among all the participant nodes. Each block is generated
by a miner through some Proof-of-Work mechanism, chained at the
tail of the valid chain in the miner’s view, and broadcast to all the
other validator nodes through a peer-to-peer gossip network. Due
to the latency of block propagation in the network, multiple miners
may generate blocks concurrently without seeing the others, and
hence may introduce forks into the ledger. The Nakamoto consen-
sus employs the longest chain rule to let all the honest nodes agree
on the valid chain and execute the transactions according to the
order of the blocks in the chain and the order of the transactions

in each block. The miner of each block on the valid chain gets a
certain amount of bitcoin as a reward from the system. The security
guarantee is achieved when forks are rare and the ledger basically
forms a single chain. In order to avoid forks, the Bitcoin protocol
dictates a very low block generation rate in the entire network,
which seriously limits its throughput. Specifically, Bitcoin can only
achieve a throughput of 7 transactions per second (tps).

Ethereum extends Bitcoin with support for a Turing-complete
programming framework, and the Solidity programming language,
which allows developers to implement complex decentralized appli-
cations. This makes it possible to apply blockchain into industries
like financial systems, supply chains, and health care [7, 8, 14]. In
Ethereum, the state resulting from transaction execution is main-
tained in the form of a Merkle tree. Ethereum adopts an account
model in its state. There are two types of accounts: user accounts
and smart contract accounts. A user account is associated with its
ether balance informationwhile each smart contract account further
has an associated executable code and its own storage represented
as a collection of key-value pairs maintained in the Merkle tree.
Each transaction occurs between a sender account and a recipient
account. The majority of transactions are one of two kinds: either
a value transfer, which is a purely monetary transfer of ether from
sender to recipient, or a contract call, where the sender account
triggers execution of the code associated with the recipient account.
During its execution, a contract call transaction can call functions
of other smart contracts. To ensure that transaction execution ter-
minates, each computational step incurs a cost denominated in gas,
paid by the transaction sender. The sender specifies a maximum
amount of gas it is willing to pay (gas limit), and if the charge ex-
ceeds this value, the computation is terminated and rolled back, and
the sender’s gas is not refunded. The smart contract code consists
of a sequence of bytecode instructions that can be interpreted and
executed by the Ethereum Virtual Machine (EVM) to manipulate the
state of the Merkle tree by updating the values of the corresponding
keys. Every bytecode instruction consumes a certain amount of gas.
Smart contracts developed using Solidity are compiled into such
bytecode sequence before they are published into the blockchain.

Like Bitcoin, Ethereum also employs Nakamoto consensus, al-
though with some different system parameters, e.g., block size,
block generation rate, etc. It improves the transaction throughput
to about 30 tps but the consensus still remains the major perfor-
mance bottleneck. In this situation, it makes sense that the EVM is
designed as a single-thread engine without the need to introduce
parallelism into the transaction execution.

To overcome the throughput bottleneck of Nakamoto consen-
sus, many new and more advanced consensus protocols have been
proposed in recent years [3, 11, 12, 17, 18, 21, 25, 26, 30]. These proto-
cols explore alternative structures to organize blocks, e.g., DAG-like
structure, together with some novel deterministic block ordering
schemes to allow faster global block generation rate without com-
promising the decentralization and security of the network, and
hence the consensus mechanism ceases to be the system bottleneck.
For example, both Conflux [18] and OHIE [30] are able to process
simple payment transactions with a throughput of more than 5000
tps, several orders of magnitudes faster than the original Nakamoto
consensus. Further research work like Shrec [13] also studies and
develops a new transaction relay protocol that can more effectively

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Utilizing Parallelism in Smart Contracts on Decentralized Blockchains by Taming Application-Inherent Conflicts ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

utilize the network bandwidth to prevent it from becoming the new
system bottleneck under high transaction throughput scenarios.
These techniques shift the throughput bottleneck of blockchain
systems to the transaction and smart contract execution, therefore,
introduce the emergent need for new technologies that can exploit
the parallelism and increase the efficiency of transaction execution.

Some recent research works [2, 4, 9, 10, 20, 22, 23, 31] have ex-
plored the designs of a parallel smart contract virtual machine by
integrating variant mechanisms of concurrency control. However,
according to the reported results, the speed-up that can be achieved
by these proposed solutions is far from linear when applied to the
real Ethereum workload. We observed that this is mainly because
of the lack of inherent parallelism in the real-world workload itself.
For example, by investigating the historical Ethereum workload,
we found that many critical paths of a series of transactions that
have to be executed sequentially are caused by the use of shared
global counters. We believe that the essential way to further im-
prove significantly the inherent parallelism of the real workload
is to introduce a better programming paradigm that can allow the
developers to express parallelism more easily while keeping the
original semantics. In addition, in the decentralized environment,
driving users to adopt a new paradigm is not that straightforward,
as it may incur extra costs, from either the engineering or the
economics considerations. Therefore, some new design of incen-
tive mechanisms is required to make the paradigm applicable to
real-world applications.

3 EMPIRICAL STUDY
What speedup should we expect when we execute blockchain trans-
actions in parallel? To answer this question, we designed an empir-
ical study using a dataset of historical Ethereum transactions.

3.1 Methodology
We empirically studied the amount of parallelism present in a real-
world dataset using historical Ethereum transactions. To this day,
Ethereum remains the backbone of the decentralized application
ecosystem. As such, this workload represents the most common
smart contract interaction scenarios, and the findings can be gener-
alized to many other systems. Our experiment mainly focuses on
the period between Jan-01-2018 and May-28-2018 (858, 236 blocks
in total), see Sections 3.3 and 7 for a more detailed justification of
the dataset used.

The subject of this experiment is smart contract storage conflicts,
i.e., cases where two transactions within the same block access the
same entry in the state tree, and at least one of these accesses is
a write. To obtain these results, we ran an OpenEthereum node
(formerly Parity) modified so that it tracks and stores all contract
storage accesses. We stored these traces for blocks #1 to #5692235
in a local database. In this experiment, other kinds of conflicting
accesses (e.g., conflicts on the account balance) are not considered.

Given that the execution time of transactions is unknown and
might vary from node to node, we used the transaction gas cost,
obtained from the transaction receipt, as an approximation of this.
This follows the practice of a number of related works [22, 23].

Given the transaction dependencies derived from their state
access traces and the transactions’ gas costs, we constructed a de-
pendency graph for each block. Then, simulating non-preemptive
execution on 2, 4, 8, 16, and 32 threads, we constructed an optimal
schedule for each block, i.e., a schedule that ensures that no transac-
tion needs to abort while also maximizing thread utilization. Under
this execution model, the overall execution cost of this schedule
puts an upper bound on the potential speedup that we can achieve;
any other schedule might either need to abort and re-execute con-
flicting transactions, or delay execution through locking. Apart
from the overall execution cost (as approximated through the over-
all gas cost), we also inspected the heaviest path in the transaction
dependency graph.

3.2 Results and Findings
Execution Bottlenecks. The experiment shed some light on the

limits of speedupwe can expect to achievewhen executing Ethereum
transactions in parallel. We found that the overall speedup on the
observed period was only 4x compared to the serial execution, an
underwhelming result considering that we had 8, 16, or even more
threads available. A closer look at the per-block results shows that
in fact, many blocks have much higher speedups, but a significant
portion of blocks perform poorly (see Figure 1).

Figure 1: Distribution of parallel speedup bounds

When comparing the execution cost of a block to the execution
cost of the heaviest path in its dependency graph, we found that
these two often coincide. This means that the overall execution is
bottlenecked on the execution of the heaviest path. When we look
at single blocks, this heaviest path is often just a single transaction:
When, for example, a block has many simple payment transac-
tions and one expensive smart contract call that executes hundreds
of token transfers, then this latter transaction will dominate the
execution time.

Under our non-preemptive scheduler model and the inherently
serial execution model of the EVM, there is no easy way to handle
such single-transaction bottlenecks. Our focus, instead, is finding
effective ways to handle bottleneck chains of two or more transac-
tions. To focus on these, we re-ran our experiment with batches of
consecutive blocks as the unit of execution, instead of just a single

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

block. The idea is that, given thousands of transactions, the relative
weight of a single transaction will be much smaller. The same exper-
iment, executed on batches of 30 blocks, shows an overall speedup
of 9.46x compared to serial execution. In this case, we observed the
same result: Batches are often bottlenecked on a single chain of
tens or sometimes hundreds of dependent transactions.

We further examined the impact of these bottleneck transaction
chains by re-running the experiment, while ignoring conflicts aris-
ing from these smart contracts. The result is an overall speedup of
23.8x compared to serial execution. These results show that bottle-
neck transactions not only have a crucial impact on the parallelism
of our dataset, but also that by breaking up these dependency chains,
we can potentially achieve significantly higher speedups.

Classification of Smart Contract Conflicts. To gain a better under-
standing of smart contract bottlenecks, we collected the primary
bottleneck transaction chains for each 30-block batch, and collected
the batches that have a speedup bound of 10x or less (3242 in total).
Then, we selected a random sample of 200 batches and analyzed
them manually. Table 1 shows selected examples from this sample.

In terms of application types, we identified three broad cate-
gories: ERC20 tokens (token distribution, airdrops) accounted for
60% of the bottlenecks in our sample, Decentralized Finance (DeFi)
applications made up 29%, while games and collectibles (NFTs) were
the cause in 10% of the cases.

In most cases, ERC20 tokens lead to conflicts when there are
several token transfers over multiple transactions that distribute
tokens from the same sender address. Transactions might also have
other dependencies, for instance, the total supply is updated every
time new tokens are minted. While ERC20 token distributions are
heterogeneous in their implementation (e.g. they use various inter-
faces like transfer, multiTransfer, batchTransfer, multisend,
aidrop), they result in similar conflict patterns.

In DeFi applications like IDEX and Bancor, a common source of
conflict is the fee account whose token balance gets updated for
every trade. In the case of IDEX, the majority of trades involve ETH,
so they all increment the ETH balance of the IDEX fee account.

Examples for games and collectibles (NFTs) include CryptoKit-
ties, Etheremon, and IdleEth. These often involve some globally
shared counters, like the number of kitties in the case of CryptoKit-
ties. Maintaining an array of game items is also common. When a
game involves payments and rewards, the fee recipient and reward
sender account’s balance might also lead to storage conflicts.

In terms of the source of conflicts, we found that in 194 of 200
batches (97%) the root cause is one or more counters that get incre-
mented (or decremented) by different transactions. In our sample,
the other common source of conflicts, arrays, only accounted for
about 2% of the cases.

Bottleneck Code Examples. As an example for counter conflicts
in token distributions, let us discuss the example in Listing 1. When
calling transfer, the sender’s balance (balances[msg.sender])
is debited, while the recipient’s balance is credited. The sender’s
balance corresponds to one specific storage location in the state
tree. The debit operation will compile to a load (SLOAD), an add
(ADD), and a store (SSTORE) operation, among others. When two
transactions trigger this function from the same sender address
concurrently, this will result in a conflict.

1 function transfer(address _to , uint256 _val) /* ... */ {

2 balances[msg.sender] -= _val; // <<<

3 balances[_to] += _val;

4 // ...

5 }

Listing 1: Solidity counters (source: ConsenSys)

Let us look at another example, this time for arrays and col-
lectibles (Listing 2). In the popular CryptoKitties Ethereum game,
each new collectible is stored in an array. The push operation on
Solidity arrays will modify two storage entries: First, it will store
the new item at a location derived from the array’s length, and
second, it will increment its length. Two concurrent transactions
will both modify the array length and as such, they will conflict.

1 function _createKitty(/* ... */) /* ... */ {

2 uint256 newKittenId = kitties.push(_kitty) - 1; // <<<

3 // ...

4 }

Listing 2: Solidity arrays (source: CryptoKitties)

3.3 Generalizability of the Observations
While our observations are based on a relatively narrow period
of Ethereum history, it is worth noting that the conclusions are
unlikely to have lost their validity, primarily because there has not
been any incentive to address this issue. For instance, Uniswap is
one of the most commonly used DeFi products as of 2020 and 2021.
If we take a look at their UniswapV2Pair contract, we can see that
the variables tracking token reserves (reserve0, reserve1) are
counters that are updated for every single token swap. The number
of transaction storage conflicts and potential bottlenecks are likely
to have increased, rather than decrease.

4 AVOIDING APPLICATION INHERENT
CONFLICTS

As we have seen in Section 3, a large portion of storage conflicts
is associated with storage slots that belong to either counters or
arrays. By counter here we mean a variable that one can use to
track a quantity by incrementing or decrementing it, regardless of
its current value. Arrays in Solidity are a simple data structure that
stores a sequence of elements, along with the number of elements.

In theory, a transaction dependency chain could involve multiple
conflicting storage slots. For instance, the chain #a <– #b <– #c
could mean that #a and #b conflict on a counter, while #b and #c
conflict on an unrelated array. In practice, however, this is rarely
the case. Most transactions in a conflict chain will execute similar
operations and will conflict on the same storage entry or entries. In
this case, dependencies are transitive, i.e., #c will conflict with #a.

To alleviate the impact of these transaction bottleneck chains, we
need to break them up into multiple shorter chains by eliminating
dependencies between subsets of the transactions involved (see
Figure 2). We propose three techniques to achieve this.

Technique 1: Conflict-Aware TokenDistribution. In our eval-
uations, we saw that token distributions (token sales, airdrops) are
by far the most common sources of bottleneck conflicts. In the
majority of cases, the source of conflict is the storage entry that
stores the sender account’s current balance.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Utilizing Parallelism in Smart Contracts on Decentralized Blockchains by Taming Application-Inherent Conflicts ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Examples for bottleneck root causes from our 200-batch random sample

block batch contract contract type method(s) conflict type conflict source

5536219-5536248 Storj ERC20 transfer (STORJ) counter same sender account
5559949-5559978 Free BOB Tokens ERC20 airdrop (BOBx) counter totalSupply
5497669-5497698 IDEX DeFi trade, adminWithdraw counter ETH fee account balance
5493409-5493438 Bancor DeFi quickConvert counter Bancor (BNT) fee recipient
5562289-5562318 CryptoKitties: Core games/NFT breedWithAuto counter pregnantKitties++
5562409-5562438 Mythereum Card games/NFT mintSpecificCards array cards.push(card)

The simplest way to address these common bottlenecks is to use
multiple sender addresses. By distributing the initial funds (where
applicable) to a set of sender accounts instead of a single account,
and using different sender addresses for consecutive transactions,
we can divide the set of bottleneck transactions into disjoint sets of
conflicting transactions, each less likely to form a bottleneck.

Of course, the feasibility of this approach depends on the specific
implementation of the token. Some tokens have other dependencies:
for instance, the total supply of tokens might also be incremented
each time new tokens are minted. In the presence of such depen-
dencies, we need a more sophisticated and general approach.

Figure 2: Breaking up a conflict chain into multiple disjunct
conflict chains. On the top of the figure, a long conflict chain
requires transactions #1-#2-#3-#7-#8-#9 to be scheduled seri-
ally on the same thread, dominating the overall execution
time. By breaking up this chain into two (#1-#3-#7-#8 and
#2-#9), each resulting chain will still need to be executed se-
rially, but the two chains can be executed in parallel to each
other. This allows us to achieve a much higher speedup.

Technique 2: Partitioned Counters. Using a technique similar
to sloppy counters widely used in the Linux kernel [5], we propose
a way to route multiple writes on the same counter to multiple
distinct storage entries. As writes to different storage entries do
not conflict, this technique can drastically reduce the conflict rate.

The main idea of partitioned counters is shown in Listing 3. Here
we have a single contract that represents a counter instance. The
value of the counter is actually maintained on 10 separate storage
entries called sub-counters. Each time a transaction modifies the
counter’s value, we assign a sub-counter based on the transaction’s
sender address. As addresses are derived using cryptographic hash-
ing, this can be viewed as a pseudorandom sub-counter assignment.
When reading the value of the counter, all sub-counters are accessed
and their values are summed.

1 contract PartitionedCounter { // LEN = 3

2 int256[LEN] public cnt;

3
4 function add(uint32 n) internal {

5 uint8 slot = uint8(tx.origin) % LEN;

6 cnt[slot] += n;

7 }

8
9 function get() internal view returns (int256 sum) {

10 for (uint8 i = 0; i < LEN; ++i) { sum += cnt[i]; }

11 }

12 }

Listing 3: Partitioned counters implemented in Solidity

Partitioned counters have several advantages. First, a given trans-
action’s writes will all operate on a single storage entry, even if it
increments the counter multiple times, as the sender address does
not change throughout the transaction’s execution. Second, two
transactions from two distinct sender addresses that both incre-
ment the counter have a much-reduced chance of operating on
the same sub-counter and thus conflicts are often avoided. Third,
the counter can be adjusted based on the use case, e.g., for coun-
ters used frequently one could use more sub-counters, and one
could use different criteria for routing transactions to different
sub-counters. Our example routes transactions based on the sender
address (tx.origin) as this addresses common token conflicts.

Partitioned counters have two main drawbacks. First, while we
only need to access a single storage entry for writing the counter,
reading it will touch all sub-counters. As a result, any transaction
that reads the counter will conflict with all writing transactions.
As such, this technique is suitable for write-heavy counters. Fortu-
nately, many of the counters we analyzed are never read through
transactions. Second, partitioned counters can be significantly more
expensive than built-in integers, especially when it comes to read-
ing the counter. This drawback is offset by the potential increase in
parallel speedup that partitioned counters offer. Moreover, many
counters are rarely or never read in a transaction context.

Technique 3: Commutative EVM Instructions. We have dis-
cussed two approaches. One operates on the application level, i.e., it
addresses conflicts by introducing specific ways to interact with the
application. The other operates on the smart contract level, by offer-
ing tools to contract developers to avoid conflicts. A third approach
is to tackle conflicts on the virtual machine level by extending the
protocol by new instructions that have better conflict tolerance.

When the Ethereum Virtual Machine (EVM) executes an incre-
ment operation, it first loads the storage entry’s current value into
memory (SLOAD), then modifies this value (ADD), and finally it stores
the end result back into the storage entry (SSTORE). This behav-
ior originates from the Solidity compiler. As discussed before, two

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

transactions incrementing the same counter will both read and
write the same storage entry, and so they will conflict.

What is special about incrementing counters is that their current
value is only used for calculating their new value, and otherwise it
is irrelevant. Put in another way, unlike other read-write conflicts,
increments are commutative. Two transactions that increment the
same counter, but do not use its value otherwise, could be executed
in any order. However, under the current semantics of the EVM,
such transactions will always conflict.

We introduce special semantics for executing increments in a
way that does not result in conflicts. Instead of compiling incre-
ments into SSLOAD and SSTORE instructions, they would instead get
compiled into a single CADD instruction that stands for commutative
add. This instruction would take a storage location and a value
as its parameters. When the VM encounters a CADD instruction,
it does not eagerly execute the addition, but instead, it notes this
operation down in an in-memory temporary storage. If, at any
point after encountering a CADD instruction, the VM encounters an
SSTORE operation on the same storage location, it then erases the
pending CADD instructions as they have been overwritten. If, at any
point after encountering a CADD instruction, the VM encounters an
SLOAD operation on the same storage location, it then first executes
all pending CADD operations, then use the resulting value for this
SLOAD.

After the transaction has been executed, the scheduler proceeds
to check for conflicts. Concurrent storage reads and writes to the
same storage location constitute conflicts. If, however, two transac-
tions only have CADD operations on a storage location, but no other
reads, then they are not considered conflicting. In this case, these
CADD operations are executed serially during the commit phase.

While introducing a CADD instruction for signaling commutative
operations to the VM arguably increases its complexity, it also al-
lows us to avoid a major class of transaction conflicts that originate
from operations on a single counter.

5 OCCWITH DETERMINISTIC ABORTS
5.1 Incentives in Parallel Scheduling
Permissionless blockchains have no central authority that could
enforce protocol compliance. Instead, protocol designers introduce
incentives that encourage desired behavior (creating blocks, avoid-
ing storage bloat) and penalize bad behavior (various attacks). The
efficiency of parallel schedulers depends on various factors, some of
which are under the users’ control. Therefore, parallel transaction
execution must also come with a set of incentives that maximize
its effectiveness.

A detailed design of such a system of incentives is beyond the
scope of this paper. We observe, however, that any incentive system
must be able to deal with spam or Denial of Service attacks that
target mispriced operations and resources in the system, as has
happened several times on Ethereum [6]. Parallel execution based
on OCC will inevitably lead to some transaction aborts and re-
executions. If there is a way for users to intentionally trigger aborts
without any penalty, then that opens up the door to a serious
DoS vulnerability of the scheduler. Our goal, then, is to define an
execution framework that would allow schedulers to deal with this
issue by deterministically pricing transaction re-executions.

5.2 Levels of Determinism
Parallel schedulers introduce a level of non-determinism into the
execution, as the precise timing of transactions might differ from
node to node. This is in direct conflict with the requirements of the
consensus mechanism, which relies on strict determinism for the
nodes to converge into a consensus state. In blockchain systems,
therefore, parallel schedulers must maintain higher levels of deter-
minism compared to traditional algorithms.We define the following
three levels of determinism in optimistic transaction execution.

(1) Classic OCC: Classic OCC [16] has no determinism guar-
antees. Generally, transactions start execution on a first-
come-first-served basis. Node-local consistency is typically
ensured by the property of serializability, which dictates that
the observable results of the parallel execution are equivalent
to those of some serial execution. However, execution of the
same transaction set on different nodes might correspond to
different serial executions and yield diverging results.

(2) OCC with deterministic commit order: Instead of dic-
tating that the parallel schedule is equivalent to any serial
schedule, it must correspond to a specific serial schedule.
This means that the final execution result on different nodes
will be equivalent, even though the actual execution might
differ. This requirement can be satisfied by committing trans-
actions strictly according to the block transaction order, or
by scheduling according to a dependency graph [2].

(3) OCC with deterministic aborts: While deterministic seri-
alization order guarantees that the observable outputs (the re-
sulting state) are the same across all nodes, the actual execu-
tion might still differ: Due to different timing of transactions,
a transaction might be committed on one node, and aborted
on another. If the protocol relies on this commit/abort deci-
sion to penalize aborts and avoid DoS attacks (see Section
5.1), this will lead to diverging states. Thus, the highest level
of determinism we aim for is when aborts themselves are
deterministic: if a transaction is aborted once on one node,
it is aborted exactly once on all the other nodes as well.

OCC with deterministic commit order is a topic with considerable
research attention in deterministic database systems [1, 27–29]. On
the other hand, the stringent requirements of OCC with determinis-
tic aborts, to the best of our knowledge, have not been described
elsewhere. While imposing such restrictions on OCC schedulers
might certainly have a negative impact on the parallel speedup,
we argue it is crucial for implementing parallel schedulers under a
distributed consensus setting.

5.3 OCC with Deterministic Aborts
Our executionmodel is based onOCCwith snapshot isolation. Trans-
actions are scheduled on a set of threads for execution. Executed
transactions are committed according to the block transaction order.
At the start of its execution, each transaction receives a snapshot
corresponding to the version of the storage after some transactions
preceding it have been committed. This snapshot does not change
during the execution of the transaction. The highest transaction
id whose committed writes are part of this snapshot corresponds
to the storage version of the snapshot, or, equivalently, the storage
version of the transaction to-be-scheduled.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Utilizing Parallelism in Smart Contracts on Decentralized Blockchains by Taming Application-Inherent Conflicts ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 3: Classic OCC: Transactions
are committed right after execution,
regardless of their order in the block.
This results in different commit orders
(#1-#2-#3-#4 and #3-#2-#1-#4) and end
states might diverge.

Figure 4: OCC with det. commit or-
der: After execution, commit is de-
layed until the previous transaction
in the block has committed. The com-
mit/abort decision for a transaction
might diverge on different nodes (#3).

Figure 5: OCC with det. aborts: Trans-
actions can only see a version of the
state decided prior to execution, even
if a more recent version is available.
Each execution of a transaction will ei-
ther commit or abort on all nodes.

As an example, let us assume that transaction #1 has been com-
mitted, transaction #2 is being executed on one thread, and we
are scheduling transaction #3 on another thread. In this case, #3
can see storage version #1 (i.e., the contents of storage up to and
including #1’s writes). If, during the execution of #3, #2 modifies
some storage values, these updates are not visible to #3. If, during
the commit of #3, the scheduler detects that some values read by #3
were concurrently modified by #2 and thus #3 operated on outdated
values, then #3 is aborted and scheduled for re-execution.

In distributed consensus, transaction execution is deterministic:
The same code triggered with the same inputs (its parameters and
the current state) will produce the same outputs. From this, it is easy
to see that a transaction executed over a specific storage version
(i.e., the same state) on two different nodes will either commit on
both or abort on both.

We then define OCC with deterministic aborts as follows. We
assign a storage version to each execution of each transaction prior
to execution: (𝑡𝑥𝑛, 𝑖) → 𝑠𝑣𝑛,𝑖 . (𝑡𝑥𝑛, 𝑖) stands for the 𝑖’s execution
of transaction #n, where 𝑖 = 0, 1, 2, Note that, depending on the
scheduler implementation, a transaction can be executed two or
more times. The last execution must commit, while all preceding
executions will be aborted. For all potential executions 𝑖 of all
transactions #n in an execution unit (e.g., in a block), 𝑠𝑣𝑛,𝑖 is defined
uniformly on all nodes, and it is defined prior to execution so that it
does not rely on non-deterministic execution details. Then, for any
(𝑡𝑥𝑛, 𝑖), transaction #n will either abort or commit on all nodes.

Throughout the execution of (𝑡𝑥𝑛, 𝑖), the scheduler must allow
the transaction to access storage entries written by transactions up
to and including transaction 𝑠𝑣𝑛,𝑖 . The scheduler must not allow
the transaction to access storage entries written by a transaction
with an id higher than 𝑠𝑣𝑛,𝑖 , even if it is committed. If 𝑠𝑣𝑛,𝑖 has
not committed and therefore the storage version specified prior
to execution is not available when (𝑡𝑥𝑛, 𝑖) is being scheduled for
execution, the transaction cannot start execution and must wait.

5.4 Example
We have 4 transactions, labeled #1-#4. Transactions #1 and #3 have
a storage conflict: #1 writes a storage entry read by #3. Let us then
walk through scheduling these four transactions on two different
nodes with 2 threads each, under different determinism guarantees.

Figure 3 depicts an example schedule using classic OCC. This
approach has no determinism guarantees. In particular, we can see
that the commit order on node A is #1-#2-#3-#4, while it is #3-#2-
#1-#4 on node B. The diverging relative order of the two conflicting
transactions (#1-#3, #3-#1) might lead to diverging states on the
two nodes. While #1 and #3 conflict, in this example they are not
executed concurrently and therefore neither needs to be aborted.

In Figure 4, we see an example of OCC with deterministic commit
order. On node B, #3 finishes execution before #1. However, it is
is not committed until after #1 has, at which point the conflict is
detected and #3 is aborted. The final commit order on both nodes A
and B is #1-#2-#3-#4. However, due to the different relative order
of the execution of #1 and #3 on the two nodes, the first execution
of #3 commits on node A while it aborts on node B. This is a sort
of non-determinism is unlikely to be acceptable (see Section 5.2).

Note that #4 on node B cannot read uncommitted results from #2,
even though these two transactions are executed sequentially. This
kind of snapshot isolation allows us to avoid cascading aborts. An
investigation of whether allowing transactions to read uncommitted
results is beneficial is beyond the scope of this paper.

Finally, Figure 5 shows how OCC with deterministic aborts works.
Prior to execution, all nodes decide that the first execution of #3
can only read the state prior to #1’s execution (𝑠𝑣3,0 := 0), while the
second execution can see the state after #2 (𝑠𝑣3,1 := 2). As a result,
even though #3 is scheduled after #1 on node A, it is not allowed to
see #1’s writes and thus it will abort. This yields a result consistent
with the other case where #3 is executed concurrently with #1, as
on node B. The second execution will see the latest state on both
nodes A and B and consequently it will commit on both nodes.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

5.5 Assigning Storage Versions
Let us make some remarks about the assignment of storage versions.
The simplest approach is to set 𝑠𝑣𝑛,0 := −1. This approach does
not rely on any information about the transaction set. While this
simple first approximation works, setting 𝑠𝑣𝑛,0 to −1 (the state prior
to transaction #0’s execution) will lead to aborts if the transaction
set contains any dependencies.

For a more sophisticated heuristic for storage version assign-
ment, we can rely on two kinds of information. First, we can use the
expected execution time of transactions to find the latest storage
version a transaction is expected to see. If, based on this estimation,
#3 will start execution after #1 but before #2, then we set 𝑠𝑣3,0 := 1.
Second, an estimation of the transaction dependency graph might
allow us to prevent aborts. For instance, if we guess that #3 is likely
to conflict with #1, then we can set 𝑠𝑣3,0 >= 1. We do not have per-
fect information about execution times or transaction dependencies.
For the former, the transaction gas limit can serve as a reasonable
first estimation. For the latter, static analysis and various heuristics
might provide us with an approximate dependency graph.

The accuracy of the storage version assignment has a direct effect
on the performance of the parallel scheduler: If we use a storage
version that is too low, then we risk introducing more aborts. If, on
the other hand, we use a storage version that is too high, then the
transaction might need to be delayed while it waits for the storage
version to become available, leading to thread under-utilization.

Finally, another aspect to consider is the overhead of the sched-
uler. Maintaining multiple storage versions might introduce a sig-
nificant storage overhead in case there are many writes. Limiting
the lowest storage version each transaction can see might help us
put a limit on this overhead.

5.6 The Algorithm
A detailed algorithm for OCC with deterministic aborts is presented
in Algorithm 1. This algorithm takes a set of transactions and their
dependencies as inputs. The dependency graph can be constructed
through an estimation of the read-write set of each transaction. It
is not necessary for the estimation to be perfect but it needs to be
deterministic and consistent on all the blockchain nodes. The more
precise it is, the fewer unnecessary aborts we may encounter.

In the beginning, the storage version of each transaction is ini-
tialized as the maximum id of the transactions that it depends on
according to the dependency graph, or −1 if it has no dependency
(lines 2-11). The transactions are pushed into a min-heap 𝐻𝑡𝑥𝑠 in-
dexed by the storage version. There are three other min-heaps.
𝐻𝑟𝑒𝑎𝑑𝑦 maintains transactions ready to be scheduled, 𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 is
exactly the thread pool for executing transactions, and 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 is
for the transactions that have already finished the execution and
wait to be committed. The global variable 𝑛𝑒𝑥𝑡 maintains the id of
the next to-be-committed transaction. Note that the algorithm de-
scribes the transaction execution mechanism used in our simulation
which results in deterministic execution completion order accord-
ing to the given gas consumption of each transaction. However, in
a real system, the correctness and effectiveness of our scheduling
strategy do not rely on this execution determinism.

Lines 16-47 show the stages that transactions experience. Stage 1
is scheduling transactions into the thread pool (17-26). We consider

Algorithm 1: DeterOCC
Input: Transactions𝑇 , gas𝐺𝑎𝑠 , number of threads 𝑡 , none or a

dependency graph 𝐷

1 𝐻𝑡𝑥𝑠 ← an empty minheap of (𝑠𝑣, 𝑖𝑑) ;
2 for 𝑖𝑑 ∈ [0, |𝑇 |) do
3 if 𝐷 exists then
4 𝑖𝑑𝑚𝑎𝑥 ← −1 ;
5 for edge (𝑖𝑑, 𝑖𝑑𝑝𝑟𝑒𝑣) ∈ 𝐷 do
6 //tx_𝑖𝑑 depends on tx_𝑖𝑑𝑝𝑟𝑒𝑣
7 //tx_𝑖𝑑 reads what tx_𝑖𝑑𝑝𝑟𝑒𝑣 writes

8 𝑖𝑑𝑚𝑎𝑥 ←𝑚𝑎𝑥 (𝑖𝑑𝑚𝑎𝑥 , 𝑖𝑑𝑝𝑟𝑒𝑣) ;
9 𝐻𝑡𝑥𝑠 .𝑝𝑢𝑠ℎ ((𝑖𝑑𝑚𝑎𝑥 , 𝑖𝑑)) ;

10 else
11 𝐻𝑡𝑥𝑠 .𝑝𝑢𝑠ℎ ((−1, 𝑖𝑑)) ;
12 𝐻𝑟𝑒𝑎𝑑𝑦 ← an empty minheap of (𝑖𝑑, 𝑠𝑣) ;
13 𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ← an empty minheap of (𝑔𝑎𝑠, 𝑠𝑣, 𝑖𝑑) ;
14 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 ← an empty minheap of (𝑖𝑑, 𝑠𝑣) ;
15 𝑛𝑒𝑥𝑡 ← 0 ;
16 while 𝑛𝑒𝑥𝑡 < |𝑇 | do
17 //Stage 1 : Schedule

18 for (𝑠𝑣, 𝑖𝑑) ← 𝐻𝑡𝑥𝑠 .𝑝𝑜𝑝 () do
19 if 𝑠𝑣 > 𝑛𝑒𝑥𝑡 − 1 then
20 𝐻𝑡𝑥𝑠 .𝑝𝑢𝑠ℎ ((𝑠𝑣, 𝑖𝑑)) ;
21 break
22 else
23 𝐻𝑟𝑒𝑎𝑑𝑦 .𝑝𝑢𝑠ℎ ((𝑖𝑑, 𝑠𝑣)) ;
24 while |𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 | < 𝑝𝑜𝑜𝑙_𝑠𝑖𝑧𝑒 and |𝐻𝑟𝑒𝑎𝑑𝑦 | > 0 do
25 (𝑖𝑑, 𝑠𝑣) ← 𝐻𝑟𝑒𝑎𝑑𝑦 .𝑝𝑜𝑝 () ;
26 𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 .𝑝𝑢𝑠ℎ ((𝐺𝑎𝑠 [𝑖𝑑], 𝑖𝑑, 𝑠𝑣)) ;
27 //Stage 2 : Execution

28 if |𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 | > 0 then
29 (𝑔𝑎𝑠, 𝑖𝑑, 𝑠𝑣) ← 𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 .𝑝𝑜𝑝 () ;
30 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 ← (𝑖𝑑, 𝑠𝑣) ;
31 for 𝑖 ∈ [0, |𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 |) do
32 𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 [𝑖] .𝑔𝑎𝑠 ← 𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 [𝑖] .𝑔𝑎𝑠 − 𝑔𝑎𝑠 ;
33 //Stage 3 : Commit/Abort

34 while |𝐻𝑐𝑜𝑚𝑚𝑖𝑡 | > 0 do
35 (𝑖𝑑, 𝑠𝑣) ← 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 .𝑝𝑜𝑝 () ;
36 if 𝑖𝑑 ≠ 𝑛𝑒𝑥𝑡 then
37 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 .𝑝𝑢𝑠ℎ ((𝑖𝑑, 𝑠𝑣)) ;
38 break
39 for 𝑖𝑑𝑝𝑟𝑒𝑣 ∈ [𝑠𝑣 + 1, 𝑖𝑑 − 1] do
40 if tx_𝑖𝑑𝑝𝑟𝑒𝑣 ’s write set ∩ tx_𝑖𝑑 ’s read set ≠ ∅ then
41 get Aborted ;
42 break
43 if Aborted then
44 𝐻𝑡𝑥𝑠 .𝑝𝑢𝑠ℎ ((𝑖𝑑 − 1, 𝑖𝑑)) ;
45 else
46 //Commit successfully

47 𝑛𝑒𝑥𝑡 ← 𝑛𝑒𝑥𝑡 + 1 ;
48 return

a transaction ready to execute when the transaction corresponding
to its storage version has been committed. Ready transactions are
pushed into the thread pool, if it has empty slots (24-26).

Stage 2 is the execution of transactions in the thread pool. We
simply choose the transaction with the minimal remaining gas,

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Utilizing Parallelism in Smart Contracts on Decentralized Blockchains by Taming Application-Inherent Conflicts ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

which is exactly the top of 𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 , push it into 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 , and
maintain the gas accordingly.

The last stage is trying to commit the transactions one by one
in 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 (lines 33-47). Transactions in 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 are maintained
in the order of id, since we always commit transactions in order
without skips. For each to-be-committed transaction, the algorithm
checkswhether it should be aborted or committed through checking
whether there exist any read-write conflicts between the current
transaction and those transactions committed since it starts to
execute (lines 39-42). If aborted, the transaction is pushed back
into 𝐻𝑡𝑥𝑠 with its new storage version set as 𝑖𝑑 − 1, otherwise, the
commit succeeds.

6 EVALUATION
6.1 Experimental Setup
The experimental evaluation of the techniques presented in this
paper builds on the empirical study discussed previously. All simu-
lations discussed here operate on the storage access traces collected
from the Ethereum transaction dataset, as outlined in Section 3.

For evaluating the maximum speedup we can achieve, we rely
on perfect knowledge of transaction dependencies. We start by
constructing a dependency graph of transactions, where vertices
(that correspond to the transactions) are weighted by the trans-
action gas costs. Then, we simulate scheduling the transactions
on a set of threads (2, 4, 8, 16, 32). In each scheduling step, out of
all transactions with no unexecuted dependencies, we select the
one that has the heaviest path starting from it. The gas cost of
this schedule serves as the baseline. For this experiment, we use
10-block batches as the unit of execution, to reduce the effect of
single-transaction bottlenecks (see Section 3.2). For evaluating the
potential effect of using partitioned counters, we prune the trans-
action dependencies in a pseudorandom fashion, in a way that is
consistent with this technique. For instance, for a counter of length
3, for each dependency, we remove it with a probability of 8/9.

This evaluation assumes that partitioned counters can be applied
to all storage conflicts. This is a reasonable approximation based on
the results presented in Section 3.2, where we found that almost all
conflicts can be traced back to counters used in token distribution
scenarios. The information available to our simulated scheduler
(EVM bytecode, storage read and write traces) is insufficient to
decide whether a storage location corresponds to a counter; for
this, one would need to rely on the contract’s source code, which
is often not publicly available.

For seeing the impact of deterministic scheduling, we imple-
mented an OCC scheduler with deterministic commit order as our
baseline. When scheduling a transaction for execution, the sched-
uler uses the highest committed transaction id as its storage version.
To make the transaction commit order deterministic, the scheduler
commits transactions according to their block order. For determin-
istic aborts, instead of using the highest executed transaction id as
the transaction’s storage version, we use a storage version defined
prior to execution: We use -1 (i.e., the storage prior to the block’s
execution) as the storage version for the transaction’s first execu-
tion, and use (𝑡𝑥𝑖𝑑 − 1) for its second execution. We then compare
their overall gas costs of these two OCC simulations.

Figure 6: Distribution of speedup bounds (10-block batches)

Figure 7: OCC with det. aborts performance impact

6.2 Evaluation Results
Overall Results. For each 10-block batch, we look at its optimal

execution cost on 32 threads (based on the transaction dependency
graph), and compare this to its serial execution cost. For the baseline
(with no modification), the average speedup over all batches is
11.93x, while the overall speedup on the whole period is 9.25x, due
to the bottlenecks discussed in Section 3. Using a counter of length
2, the average speedup becomes 21.23x, while the overall speedup
is 17.96x. The highest speedup we can hope to achieve, when we
remove all transaction dependencies, is 23.63x on average, while
the overall speedup is 20.61x in this experiment.

As for OCC with deterministic aborts, over single blocks with 32
threads, the baseline OCC scheduler has a 3.287x overall speedup
(min: 0.52x, max: 32x, avg: 5.89x), while the deterministic scheduler
results in 3.275x overall speedup (min: 0.52x, max: 32x, avg: 5.84x).
We observed similar results over batches of 30 blocks.

Discussion. These results show that the parallelism inherent in
the dataset (9.25x) is much lower than what the transactions would
allow for (23.63x). This is due to the fact that transactions depending
on each other need to be scheduled serially (or get aborted). By
eliminating some dependencies using techniques like partitioned
counters, we can approach this limit, achieving up to 17.96x speedup
with just a counter size of 2. Figure 6 shows overlayed histograms for
the distribution of speedup bounds for each block-batch. From this
figure, we can clearly see how partitioned counters let us converge
to the optimum, in terms of the parallel speedup achievable.

Figure 7 shows the performance degradation in OCC with det.
aborts (blue), compared to OCC with det. commit order (red) on
single blocks. For this figure, blocks were ordered by their base-
line speedup (red). We can see that extending the scheduler with

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

deterministic aborts did cause performance degradation, however,
the speedups generally still do not diverge much from the baseline,
except for a few outliers. In fact, in this dataset, 92.47% of the blocks
produced exactly the same result using the two schedulers, while
only 0.22% resulted in 80% of the baseline speedup or lower.

Implications. These results suggest that partitioned counters can
have a significant impact on the highest parallel speedup that we
can achieve. Even with just a counter of length 2, when applied
to all conflicts, the parallel speedup bound doubled, approaching
the optimum. Raising the counter length, we keep approaching the
optimum. Based on these results, we believe that the techniques
proposed in this paper, when applied to some contracts responsible
for some major bottlenecks, can significantly increase the parallel
speedup that any real-world parallel scheduler can achieve.

The results about OCC with deterministic aborts suggest that
raising the level of determinism only has a minor performance
impact, decreasing the overall speedup from 3.287x to 3.275x. As
shown in Figure 7, while there are occasional outliers with signifi-
cant performance degradation under this scheduling mechanism,
they are rare. While it is possible that a more performant sched-
uler, and a workload with more parallelism, will result in a larger
discrepancy between these two numbers, based on these initial
evaluations, our expectation is that OCC with deterministic aborts
is suitable for implementation in real-world blockchain protocols.

7 THREATS TO VALIDITY
The most significant threat to the validity of our study is that trans-
action and contract interaction patterns have changed since the
observed period in 2018 and so our conclusions do not hold for more
recent periods. We believe that this is unlikely. The issues pointed
out in this paper have not been addressed, and so there has been
neither awareness nor incentive to avoid these conflict-inducing
patterns. If anything, the problem has likely become more severe,
with several new hotspot contracts emerging, many of which have
obvious storage conflicts. An example for this is Uniswap, as pointed
out in Section 3.3. Saraph et al. [23] also observes that the paral-
lelizability of blocks seems to decrease over time.

There is a chance that the gas cost of transactions does not
accurately capture their running time, which would reduce the
accuracy of our evaluations. Given that the most time-consuming
operations (namely, SLOAD and SSTORE) have very high gas costs,
large deviation seems unlikely.

In this study, we only considered storage conflicts. Other conflict
types include conflicts on an account’s balance and nonce, and
conflicts on contract creation/destruction. Balance conflicts can
be handled using partitioned counters. Nonce conflicts require
adjusting the nonce management mechanism. As contract existence
conflicts are rare, they are unlikely to have distorted our results.

8 RELATEDWORK
Parallel execution of blockchain transactions has been the focus of
considerable research attention in recent years. Perhaps the first
such work is by Sergey et al. [24], in which the authors propose
to treat smart contracts as concurrent objects to prevent common
bugs. In 2019, Saraph et al. [23] published an exploratory work to
estimate the potential benefit of executing Ethereum transactions

in parallel by simulating a 2-phase parallel-then-serial optimistic
scheduler. They observe a 2-fold speedup for the period in 2018
using 64 threads, and identify CryptoKitties as a hotspot contract.
They briefly remark on incentives and commutative operations. Rei-
jsbergen et al. [22] evaluate the potential speedup on seven public
blockchains using dependency graphs, working on the granularity
of contracts instead of storage entries. They report that up to 6x
speedup is achievable using 8 or more cores, and observe that larger
blocks are easier to parallelize. Our empirical study is inspired by
these two works, and we reinforce or expand on some of their con-
clusions. However, these works do not analyze conflicts in-depth
and so they fail to explain the poor parallel speedups they predict.
Their models also do not fulfill the determinism requirements that
would make them practical in public blockchains.

Numerous previous works have proposed to use various concur-
rency control techniques to parallelize blockchain transactions. In
the approach proposed by Anjana et al. [2], miners use optimistic
STM to execute transactions and produce a dependency graph that
validators can use to re-execute transactions. Zhang et al. [31],
instead of using a dependency graph, propose to include each trans-
action’s write set in the block, and let validators use these to detect
conflicts. Pang et al. [20] also consider the granularity of the addi-
tional information included in the block. Dickerson et al. [9] propose
to use abstract locks to detect conflicts during speculative parallel
execution. Dozier et al. [10], on the other hand, use a Pessimistic
Concurrency Control technique by locking the accounts accessed
during transaction execution. Finally, Bartoletti et al. [4] offer a
formal model of concurrent blockchain transactions. Most of the
proposed techniques are protocol-breaking, in the sense that they
modify the block structure and the execution semantics, while our
approach remains compatible with serial implementations. These
works show modest speedup on parallel miners but they do not
address the root cause of the speedup limit. An overview of this
area can be found in the survey piece by Kemmoe et al. [15].

Optimistic Concurrency Control [16] has been widely used in
databases and wide-area distributed systems. Deterministic OCC
was pioneered by Abadi et al. In Calvin [29], they use a determinis-
tic locking protocol to let nodes arrive on a consistent transaction
order, eliminating the need for distributed commit protocols. Their
approach is further outlined in several other papers [1, 27, 28]. Our
discussion of the determinism of blockchain transaction execution
was inspired by these works. In addition to using a predefined seri-
alization order, we introduced an even higher level of determinism,
where the effects of transactions that are normally not observable
are also deterministic, and can be used for incentive assignment.

9 CONCLUSION
With the evolution of consensus protocol technology in public
blockchain, the execution efficiency is becoming the new bottleneck
of the entire system, which drives the need of parallelizing the trans-
action execution. This work observes that the application inherent
conflicts are the fundamental obstacle to achieving ideal speedup
in existing parallelization techniques. To address this issue, the
proposed solution introduces the convenient improvement on the
smart contract programming paradigm with consideration of the
support of incentives, therefore opens the possibility of maximizing
the parallelism of transaction execution in public blockchains.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Utilizing Parallelism in Smart Contracts on Decentralized Blockchains by Taming Application-Inherent Conflicts ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] Daniel J Abadi and Jose M Faleiro. 2018. An Overview of Deterministic Database

Systems. Commun. ACM 61, 9 (2018), 78–88.
[2] Parwat Singh Anjana, Sweta Kumari, Sathya Peri, Sachin Rathor, and Archit

Somani. 2019. An Efficient Framework for Optimistic Concurrent Execution
of Smart Contracts. In 2019 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP). IEEE, 83–92.

[3] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath.
2019. Prism: Deconstructing the Blockchain to Approach Physical Limits. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (London, United Kingdom) (CCS ’19). Association for Computing Ma-
chinery, New York, NY, USA, 585–602. https://doi.org/10.1145/3319535.3363213

[4] Massimo Bartoletti, Letterio Galletta, and Maurizio Murgia. 2020. A True Con-
current Model of Smart Contracts Executions. In International Conference on
Coordination Languages and Models. Springer, 243–260.

[5] Silas Boyd-Wickizer, Austin T Clements, YandongMao, Aleksey Pesterev, M Frans
Kaashoek, Robert Tappan Morris, Nickolai Zeldovich, et al. 2010. An Analysis of
Linux Scalability to Many Cores. In OSDI, Vol. 10. 86–93.

[6] Ting Chen, Xiaoqi Li, Ying Wang, Jiachi Chen, Zihao Li, Xiapu Luo, Man Ho Au,
and Xiaosong Zhang. 2017. An adaptive gas cost mechanism for ethereum to
defend against under-priced dos attacks. In International conference on information
security practice and experience. Springer, 3–24.

[7] Deloitte. 2017. 5 Blockchain Technology Use Cases in Financial Services. http:
//blog.deloitte.com.ng/5-blockchain-use-cases-in-financial-services/.

[8] Deloitte. 2018. Blockchain: Opportunities for Health Care. https:
//www2.deloitte.com/us/en/pages/public-sector/articles/blockchain-
opportunities-for-health-care.html.

[9] Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, and Eric Koskinen. 2019.
Adding Concurrency to Smart Contracts. Distributed Computing (2019), 1–17.

[10] Ryan Dozier, Sam Ervolino, Zach Newsom, Faye Strawn, and Ross Wagner. [n.d.].
A Correctness Tool to Verify Concurrent Ethereum Transactions. ([n. d.]).

[11] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. 2016.
Bitcoin-NG: A Scalable Blockchain Protocol. In NSDI. 45–59.

[12] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 51–68.

[13] Yilin Han, Chenxing Li, Peilun Li, Ming Wu, Dong Zhou, and Fan Long. 2020.
Shrec: Bandwidth-Efficient Transaction Relay in High-Throughput Blockchain
Systems. In Proceedings of the 11th ACM Symposium on Cloud Computing (Virtual
Event, USA) (SoCC ’20). Association for Computing Machinery, New York, NY,
USA, 238–252. https://doi.org/10.1145/3419111.3421283

[14] IBM. 2020. Blockchain for Supply Chain. https://www.ibm.com/blockchain/
supply-chain/.

[15] Victor Youdom Kemmoe, William Stone, Jeehyeong Kim, Daeyoung Kim, and
Junggab Son. 2020. Recent Advances in Smart Contracts: A Technical Overview
and State of the Art. IEEE Access 8 (2020), 117782–117801.

[16] Hsiang-Tsung Kung and John T Robinson. 1981. On Optimistic Methods for
Concurrency Control. ACM Transactions on Database Systems (TODS) 6, 2 (1981),
213–226.

[17] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. 2015. Inclusive Block
Chain Protocols. In International Conference on Financial Cryptography and Data
Security. Springer, 528–547.

[18] Chenxing Li, Peilun Li, Dong Zhou, Zhe Yang, Ming Wu, Guang Yang, Wei
Xu, Fan Long, and Andrew Chi-Chih Yao. 2020. A Decentralized Blockchain
with High Throughput and Fast Confirmation. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 515–528. https://www.usenix.
org/conference/atc20/presentation/li-chenxing

[19] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. Decen-
tralized Business Review (2008), 21260.

[20] Shuaifeng Pang, Xiaodong Qi, Zhao Zhang, Cheqing Jin, and Aoying Zhou. 2019.
Concurrency Protocol Aiming at High Performance of Execution and Replay for
Smart Contracts. arXiv preprint arXiv:1905.07169 (2019).

[21] Rafael Pass and Elaine Shi. 2017. Fruitchains: A Fair Blockchain. In Proceedings
of the ACM Symposium on Principles of Distributed Computing. ACM, 315–324.

[22] Daniël Reijsbergen and Tien Tuan Anh Dinh. 2020. On Exploiting Transaction
Concurrency to Speed Up Blockchains. In 2020 IEEE 40th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 1044–1054.

[23] Vikram Saraph and Maurice Herlihy. 2019. An Empirical Study of Speculative
Concurrency in Ethereum Smart Contracts. arXiv preprint arXiv:1901.01376
(2019).

[24] Ilya Sergey and Aquinas Hobor. 2017. A Concurrent Perspective on Smart Con-
tracts. In International Conference on Financial Cryptography and Data Security.
Springer, 478–493.

[25] Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar. 2020. PHANTOM
and GHOSTDAG, A Scalable Generalization of Nakamoto Consensus. (2020).
https://eprint.iacr.org/2018/104.pdf.

[26] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure High-Rate Transaction
Processing in Bitcoin. In International Conference on Financial Cryptography and
Data Security. Springer, 507–527.

[27] Alexander Thomson and Daniel J Abadi. 2010. The Case for Determinism in
Database Systems. Proceedings of the VLDB Endowment 3, 1-2 (2010), 70–80.

[28] Alexander Thomson and Daniel J Abadi. 2011. Building Deterministic Transaction
Processing Systems without Deterministic Thread Scheduling. In Proceedings
of the 2nd Workshop on Determinism and Correctness in Parallel Programming,
Vol. 5.

[29] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J Abadi. 2012. Calvin: Fast Distributed Transactions for Parti-
tioned Database Systems. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 1–12.

[30] Haifeng Yu, Ivica Nikolic, Ruomu Hou, and Prateek Saxena. 2020. OHIE:
Blockchain ScalingMade Simple. In Proceedings of the IEEE Symposium on Security
and Privacy. IEEE.

[31] An Zhang and Kunlong Zhang. 2018. Enabling Concurrency on Smart Contracts
Using Multiversion Ordering. In Asia-Pacific Web (APWeb) and Web-Age Infor-
mation Management (WAIM) Joint International Conference on Web and Big Data.
Springer, 425–439.

11

https://doi.org/10.1145/3319535.3363213
http://blog.deloitte.com.ng/5-blockchain-use-cases-in-financial-services/
http://blog.deloitte.com.ng/5-blockchain-use-cases-in-financial-services/
https://www2.deloitte.com/us/en/pages/public-sector/articles/blockchain-opportunities-for-health-care.html
https://www2.deloitte.com/us/en/pages/public-sector/articles/blockchain-opportunities-for-health-care.html
https://www2.deloitte.com/us/en/pages/public-sector/articles/blockchain-opportunities-for-health-care.html
https://doi.org/10.1145/3419111.3421283
https://www.ibm.com/blockchain/supply-chain/
https://www.ibm.com/blockchain/supply-chain/
https://www.usenix.org/conference/atc20/presentation/li-chenxing
https://www.usenix.org/conference/atc20/presentation/li-chenxing

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Empirical Study
	3.1 Methodology
	3.2 Results and Findings
	3.3 Generalizability of the Observations

	4 Avoiding Application Inherent Conflicts
	5 OCC With Deterministic Aborts
	5.1 Incentives in Parallel Scheduling
	5.2 Levels of Determinism
	5.3 OCC with Deterministic Aborts
	5.4 Example
	5.5 Assigning Storage Versions
	5.6 The Algorithm

	6 Evaluation
	6.1 Experimental Setup
	6.2 Evaluation Results

	7 Threats to Validity
	8 Related Work
	9 Conclusion
	References

